High Perceptual Quality Image Denoising with a Posterior Sampling CGAN
Supplementary Material

Theo Adrai
Technion

Guy Ohayon
Technion

Appendices

A. Generator (Denoiser) Architecture and Full
Framework Schematic

Inspired by StyleGAN2 [5] and UNet [8], our condi-
tional generator (denoiser) is an encoder-decoder deep neu-
ral network, as shown in Figure 5. The decoder builds the
output image scale by scale by adding residual information
at each stage to the up-sampled RGB output of the previ-
ous one. This approach was proposed in StyleGAN2 to
sidestep the shortcomings of progressive growing [4, 5], a
training methodology in which the number of layers in the
generator and the discriminator increases during training.
In the newly proposed scheme, both are trained end-to-end
with all resolutions included, which significantly eases the
training procedure but still enforces the decoder to progres-
sively synthesize the output image stage-by-stage by adding
resolution-specific details at each level. The encoder is anal-
ogous to a drip irrigation system. It consists of a main
pipeline that has several exits to independent convolutional
neural networks (CNNs), denoted as Drips, each of which
reinforces its neighboring decoder block with low recep-
tive field information. The main pipeline is a deep CNN
with high receptive field that progressively encodes the in-
put image. This method alleviates the task of the decoder,
especially at higher scales where original pixel locations are
crucial for distortion performance.

Since our denoiser is stochastic and meant to sample
from the posterior distribution, it can be considered as a
mapping from the latent distribution of the random noise
to the posterior, as in all GAN based sampling solutions.
Instead of injecting a single noisy tensor to the first layer
of our model, we inject noise at each scale of the decoder.
These convolutional layers operate as follows: for a given
layer with ¢ input channels {x;}$_, and a random noise in-
put 2 of the same size, the resulting output of the layer (be-
fore the activation function is applied) is

Zhi*fﬂq‘,+hc+1 * 2,)]

i=1

Gregory Vaksman
Technion

Michael Elad
Google Research

Peyman Milanfar
Google Research

where {h;}¢t] are the convolutional kernels of the layer
(considering only one block of kernels that leads to one out-
put feature map). If one further assumes that h.4; = a (a
1-by-1 kernel) for some scaling factor «, this boils down
to the noise injection scheme of StyleGAN [6] (each result-
ing feature map corresponds to a different scaling factor).
In addition, if one forces the scaling factors of all feature
maps to be equal, this becomes the noise injection scheme
of StyleGAN?2 [5]. Thus, our scheme enlarges the hypoth-
esis set of the convolution operating on z. We incorporate
this idea by concatenating each noise injection to the next
convolutional layer’s input. Consult Figure 5 for clarifica-
tions on the denoiser’s architecture, and Figure 6 for a full
framework schematic diagram.

B. Latent Adversarial Generator Implementa-
tion Details

Expression (6) is the originally proposed optimization
task of LAG [2].Yet, the SISR results presented in LAG’s
paper are achieved with a tweaked version,

min sup Ex [f(x,0)] — Eg, y [f(g6, R(go,¥))] (9

+AExy [[|[P(x,0) — P(Go(0,y), R(Go(0,y),¥))I3] .

in which, instead of y, the critic receives R(gp,y) as a sec-
ond input, the pixel-wise absolute difference between the
degraded image y and the corresponding degraded version
of the generated image gy|y. Such a tweak could also be
adopted in the case of image denoising, for instance by
defining R(gg,y) to be the absolute difference between x,
the clean source of y, and the corresponding denoised im-
age go|y. However, such a revision deviates the posterior
sampling goal, since the Wasserstein-1 distance [1] would
consequently measure the deviation between the distribu-
tions Py and Py |r(g,.y). We leave this, possibly beneficial,
approach for future research.

In PSCGAN the critic receives y as its second input, and
thus, for a fair comparison, we implement LAG in the same
fashion instead of applying the aforementioned tweak. Our
choice also aligns with optimization task (6) (since the critic

Input

Encoder l
— o o
Conv3 x3 Xc Conv3 x3 xci1| Conv3 X3 Xcy Conv3 x3 Xc
v :
Conv3 x3 Xc Conv3x3 xXcig| + | Conv3x3 Xeo Conv3 x3 X

v \Z ' v
Down Down Down A
1 i—l

A

Drip(di—1) 3 x 3 X cq,, Drip(dz) 3 x 3 x cg, Drip(dy) 3 x 3 X cq

o FE %
a g i |

Cat Zi1 Cat €211 E Cat 22,1 Cat Z1,1
Conv3 x 3 X ¢; Conv3 x3Xciq | Conv 3 x 3 X ¢y Conv3 x3xc
Cat Zi2 2{—1,2 Cat 222 Cat 21,2
Conv3 x 3 X ¢; Conv3 x 3 xXc¢i1 Conv 3 x 3 X ¢y Conv3 x3xc
tRGB tRGB tRGB tRGB
N — L - Up D »
Decoder v
Output

Figure 5: Our proposed generator architecture. An input noisy image is passed through an encoder of ¢ doubly-blocked
convolutional layers and downsampled after each (except for the first block). The downsampling operation is performed by a
stride of 2 in the preceding convolution layer. The result of each doubly-blocked layer is then passed through a Drip, which
is a feed-forward CNN (in the figure, dj, and ¢4, denote the number of layers and the number of output channels of each
layer in drip k, respectively). Each of these drips extracts features that are limited to a certain receptive field, which are then
passed to the neighboring decoder block through concatenation. This further assists in reconstructing the RGB result of the
corresponding scale, especially at higher scales. The decoder builds the reconstructed image scale by scale, using features
aggregated from previous layers of the decoder and from the drip injections. Noise injections are performed in the decoder’s
pipeline, where a noisy “image”, denoted as zj; and z; o for each 1 < k < 4, is concatenated as another feature map of
the next layer’s input. All convolutional layers, except for t RG B, are coupled with Leaky ReLU activation functions with
a slope of a = 0.2 for negative values. tRGB is a simple convolution operation with output channels being equal to the
number of channels of the input image (3 for RGB images). All up-sampling operations are performed with nearest-neighbor
interpolation.

receives y) and therefore leads to a more direct evaluation achieve higher perceptual quality (regardless of the choice
of it. of P(-,-)), this choice, quite conveniently, also allows for a
fair PSNR comparison between PSCGAN and LAG, since
the images produced by LAG at z = 0 are now directly
aimed to optimize the MSE. We refer to this version of LAG
as Ours-LAG in the experimental evaluations, so as to em-
phasize that our choices deviate quite significantly from the
original implementation of LAG (a different inverse prob-
lem, different architectures, and different loss).

It is important to note that expression (6) is highly de-
pendent on the choice of P(-,-).While many choices are
possible, we find that in our case choosing P(z,y) = =
leads to superior results, both in the FID and the PSNR
performance measures. P(x,y) = x means that we mea-
sure the distortion between x and Gy(0,y) in expression
(6) with the MSE loss, operating in the RGB pixel space
of the image instead of operating in an intermediate feature
space.While the sampled images attained at o, = 1 should

Clean Image x

Average Denoised

Image Xqg

Real/Fake?

Y
FAEr MSE(X4y4,%)
u xbg Conditional
) Discriminator
) %1 + %o +.. . +X @
<— n~ N(0,6%]) Xavg = ! 2 M i d Cu(z,9)

M

Stochastic
Denoiser

Degraded Image y

Stochastic
Denoiser

d GG* (y7 Z)
Degraded Image 'y

k X1~ Pyy Xo ~Pyy X3~ Py

Z1,...4 2\ NN(O,I)

denoised samples from the posterior

Figure 6: A schematic diagram describing our proposed method at both training time and inference time. During training, the

denoiser receives a noisy image y and outputs many possible denoised candidates x;,Xo, . . .

,Xpr. One of these candidates

is being fed to a conditional discriminator, so as to drive the denoiser to produce images with high perceptual quality. At the
same time, all of the denoised candidates are being averaged, and the result, X4, is forced to be close to the clean image x
(in MSE). During inference, the denoiser receives a noisy input and produces many different denoised candidates with high
perceptual quality, as many as the number of provided latent noises z;.

C. Training
C.1. Data Splits

e FFHQ [6] thumbnails contains 70,000 images. We use
images 3000-4999 for testing and the rest for training.

e LSUN Bedroom [9] contains 3,037,042 images. We ran-
domly pick 100,000 and 4,000 non-overlapping images
for training and testing, respectively.

e LSUN Church [9] contains 126,227 images. We ran-
domly pick 100,000 and 4,000 non-overlapping images
for training and testing, respectively.

C.2. Preprocessing

Our model assumes an input image of size 128 x 128, and
since the images in both LSUN data sets are of larger size in
both axes, we first center crop each image while keeping the
smaller dimension fixed, and then resize the resulting square
image to the desired size through interpolation. All images

in the FFHQ thumbnails data set are already of size 128 x
128, and therefore do not require augmentation. Finally, we
use random horizontal flip during training in all data sets.

C.3. Hyperparameters

PSCGAN (and consequently PSCGAN-A) is trained
with the default hyperparameters given in Algorithm 1.Note
that we evaluate the penalty term on the first PB = 8 sam-
ples of each mini-batch of B = 32 samples, and approx-
imate E [Gy(z,y)|y] by averaging M = 8 generated sam-
ples for a given noisy image y. While this choice of M may
seem too small to evaluate the expectation of the posterior,
it is sufficient to demonstrate the novelty of PSCGAN.

All other algorithms are also trained with a batch size
of 32 and the Adam optimizer [7]. LAG is trained with a
learning rate of 2.5 - 10™%, and the Adam hyperparameters
are 81 = 0, B2 = 0.99 (similar to PSCGAN). DnCNN and
Ours-MSE are trained to optimize the MSE loss, the former

with a learning rate of 10~3 and the latter with a learning
rate of 5 - 10~*. The Adam hyperparameters for both meth-
ods are 1 = 0.9, B3 = 0.99.

The full implementation of all methods and the check-
points that reproduce the results reported in this paper are
publicly available. Our implementations are based on Py-
Torch and PyTorch Lightning [3].

D. LSUN Data Sets’ Visual Results

In Figure 7 and Figure 8 we illustrate the visual qual-
ity of several denoised images produced by our method and
by other MSE based methods on the LSUN Church outdoor
and the LSUN Bedroom test sets. As can be seen, our model
produces denoised images with high perceptual quality, al-
though in these data sets it is harder to notice the perceptual
quality difference with the naked eye (since the images are
compressed).

References

[1] Martin Arjovsky, Soumith Chintala, and Léon Bottou.
Wasserstein generative adversarial networks. In Doina Precup
and Yee Whye Teh, editors, Proceedings of the 34th Inter-
national Conference on Machine Learning, volume 70, pages
214-223. PMLR, 2017. 1

[2] David Berthelot, Peyman Milanfar, and Ian Goodfellow. Cre-
ating high resolution images with a latent adversarial genera-
tor. arXiv preprint arXiv:2003.02365, 2020. 1

[3] WA Falcon et al. Pytorch lightning. https://github.
com/PyTorchLightning/pytorch-1lightning,
2019. 4

[4] Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehtinen.
Progressive growing of gans for improved quality, stability,
and variation. arXiv preprint arXiv:1710.10196,2018. 1

[5] Tero Karras et al. Analyzing and improving the image qual-
ity of stylegan. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, June 2020. 1

[6] Tero Karras, Samuli Laine, and Timo Aila. A style-based
generator architecture for generative adversarial networks. In
Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, June 2019. 1, 3

[7] Diederik P. Kingma and Jimmy Ba. Adam: a method for
stochastic optimization. arXiv preprint arXiv:1412.6980,
2017. 3

[8] O. Ronneberger, P.Fischer, and T. Brox. U-net: convolutional
networks for biomedical image segmentation. In Medical Im-
age Computing and Computer-Assisted Intervention, volume
9351 of LNCS, pages 234-241. Springer, 2015. 1

[9] Fisher Yu et al. Lsun: construction of a large-scale image
dataset using deep learning with humans in the loop. arXiv
preprint arXiv:1506.03365, 2015. 3

%
\

L %
‘...

T

%
[

Z
<
@]
O
%]
Al
Z
<
@]
Q
%]
A
Z
<
@]
O
%]
Al
<
Z
<
@]
Q
%]
At
m
0
=
5
o
Z
Z
Q
=
Al

Figure 7: Denoising results on the LSUN Church outdoor test set produced by several methods. For each image we show
three different outcomes of PSCGAN, each attained by injecting noise with standard deviation of o, = 0.75. In this case,
PSCGAN-A averages 64 instances of PSCGAN, where each instance is attained with o, = 1 at inference time. Each model
is trained on the LSUN Church outdoor training set to denoise a specific noise level (25, 50 or 75).

Noisy Clean
= 7

= n

DnCNN Ours-MSE PSCGAN-A PSCGAN PSCGAN PSCGAN

?. :
I
¥
' S =
"

=

Figure 8: Denoising results on the LSUN Bedroom test set produced by several methods. For each image we show three dif-
ferent outcomes of PSCGAN, each attained by injecting noise with standard deviation of o, = 0.75. In this case, PSCGAN-A
averages 64 instances of PSCGAN, where each instance is attained with o, = 1 at inference time. Each model is trained on
the LSUN Bedroom training set to denoise a specific noise level (25, 50 or 75).

