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Abstract

We propose an image restoration algorithm that can control the perceptual quality
and/or the mean square error (MSE) of any pre-trained model, trading one over
the other at test time. Our algorithm is few-shot: Given about a dozen images
restored by the model, it can significantly improve the perceptual quality and/or
the MSE of the model for newly restored images without further training. Our
approach is motivated by a recent theoretical result that links between the minimum
MSE (MMSE) predictor and the predictor that minimizes the MSE under a perfect
perceptual quality constraint. Specifically, it has been shown that the latter can be
obtained by optimally transporting the output of the former, such that its distribution
matches the source data. Thus, to improve the perceptual quality of a predictor that
was originally trained to minimize MSE, we approximate the optimal transport by
a linear transformation in the latent space of a variational auto-encoder, which we
compute in closed-form using empirical means and covariances. Going beyond
the theory, we find that applying the same procedure on models that were initially
trained to achieve high perceptual quality, typically improves their perceptual
quality even further. And by interpolating the results with the original output of
the model, we can improve their MSE on the expense of perceptual quality. We
illustrate our method on a variety of degradations applied to general content images
of arbitrary dimensions.

1 Introduction

PD-function

Figure 1: The W2-MSE trade-off [1].

Many image restoration algorithms aim to recover a clean
source image from its degraded version. The performance
of such algorithms is often evaluated in terms of their average
distortion, which measures the discrepancy between restored
images and their corresponding clean sources, as well as per-
ceptual quality, which refers to the extent to which restored
images resemble natural images. The work in [2] exposed a
fundamental trade-off between distortion and perceptual qual-
ity, where the latter is measured using a perceptual index that
quantifies the statistical divergence between the distribution of
restored images and the distribution of natural images. The
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Figure 2: Our few-shot algorithm improves the visual quality of any estimator at test time. For
example, we can improve the photo-realism of DDRM [3] even further.

trade-off curve reveals the predictor that achieves the lowest possible distortion, denoted as Dmax,
while maintaining perfect perceptual quality (refer to fig. 1).

Following the methodology introduced by [2], it has become common practice to compare restoration
methods on the perception-distortion (PD) plane, with many methods aiming to reach the elusive
Dmax point. In this paper, we present a practical approach to approximate the Dmax predictor
where distortion is measured using the MSE and perceptual quality is measured by the Wasserstein-2
distance (W2 ) between the distributions of restored and real images. Our approach is based on the
recent work [1] which demonstrated that the Dmax predictor can be obtained using optimal transport
(OT) from the output distribution of the MMSE predictor to the distribution of natural images. By
applying an optimal transport plan to an MMSE restoration resulting from a degraded image, we can
produce Dmax estimations by transporting the MMSE restored estimate.

Although progress has been made in finding OT plans between image distributions [4–6], it re-
mains challenging task, particularly for high-dimensional distributions. Therefore, we propose an
approximation method for the Dmax estimator by performing transportation in the latent space of
a pre-trained auto-encoder. A similar strategy was successfully employed in the context of image
generation in [7], showing effectiveness in reducing complexity and preserving details.

Inspired by the style transfer literature [8–10], we assume that the latent representations follow a
Multivariate Gaussian (MVG) distribution. Thus, by considering the first and second-order statistics
of the embedded MMSE estimates and embedded natural images, we can compute the well-known
closed form solution of the OT operator between two Gaussians. To further reduce complexity,
we make additional assumptions about the structure of the latent covariance matrices, enabling the
computation of the OT operator with as few as 10 unpaired MMSE restored and clean samples. This
approach leads to a few-shot algorithm that significantly enhances visual quality.

Interestingly, our method can even improve the visual quality of generative models that were trained
to achieve high perceptual quality in the first place (see fig. 2). Furthermore, by adjusting a single
interpolation parameter, we can trade off perception for distortion, resulting in marginal improvements
in the distortion performance of some regression models that were trained to prioritize source fidelity.
We demonstrate the improved photo-realism of our approach on a variety of tasks and models,
including GAN and diffusion-based methods, using high-resolution (e.g., 5122 px) general-content
images with arbitrary aspect ratios. 1

2 Related Work

Throughout the paper, we distinguish between two kinds of restoration algorithms: distortion and
perception focused. The former category includes traditional methods that minimize distortion (e.g.,

1Our code is publicly available at https://github.com/theoad/dot-dmax.
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MSE) [11–15]. The latter category includes more recent works that usually involve generative models
like Generative Adversarial Networks (GANs) [16–18], or diffusion-based techniques [3, 19].

This paper searches for the theoretical Dmax estimator which minimizes the MSE under a perfect
perceptual quality constraint. However, our method is not a stand-alone restoration algorithm, i.e.,
its input is not the degraded image. Rather, it can be applied on top of any existing predictor. We
provide a new way to potentially improve the performance (either MSE or perceptual) of any given
estimator in a few-shot, plug-and-play fashion.

Provided with an image latent representation method (e.g., an auto-encoder), our algorithm applies a
linear transformation on all the overlapping patches of its input (after encoding). In this regard, its
functioning is not far from classical image restoration methods [14, 15, 20].

2.1 Wasserstein-2 transport

While many successful approaches exist to compute the W2 distance between discrete, low or medium
dimensional densities [21, 22], it is far more challenging to determine an optimal transport plan
in the continuous, high-dimensional setting. In fact, the task of even computing the Wasserstein
distance (without its optimal plan) on empirical distributions has drawn significant attention with
WGANs [23]. Thus, computing the transport operator requires to optimize the W2 distance but with
an additional ordering constraint on the generator, which proved to be a challenging task when dealing
with real-world data sets [4–6]. An attempt to sidestep this difficulty would be to use the Gelbrich
distance [1, 24], which lower bounds the W2 distance and depends only on the first two moments
of the distributions. Nevertheless, it is only a good estimate when the support of the distributions
has elliptical level sets. To address this, one can find a low-dimensional embedding where (i) high
dimensionality is no longer an issue, (ii) the distributions are not degenerated, and (iii) the Gelbrich
distance equals the Wasserstein-2 distance. A possible option would be to use the bottleneck of an
auto-encoder. This approach was adopted by style transfer works [8–10], and is also widely used by
tools that compare image distributions like the Fréchet Inception Distance (FID) [25]. Both use a
convolutional encoder and consider the pixels of the latent embedding (the vectors that span across
the channel dimension) as a MVG distribution.

3 Background

3.1 Optimal transport in Wasserstein Space

In this section, we briefly introduce key concepts of optimal transport theory that we draw from [26].

Let µ and ν be probability measures on Rn. The set of all transport plans, which are probability
measures π on Rn × Rn with marginals µ and ν, is denoted by Π(µ, ν). The Wasserstein-2 distance
between µ and ν is defined as follows:

W2
2 (µ, ν) = inf

π∈Π(µ,ν)
Ex,y∼π

[
∥x− y∥22

]
. (1)

A transport plan that achieves this infimum is called an optimal transport plan between µ and ν. If µ
has a density (i.e. is absolutely continuous w.r.t. the Lesbegue measure), there exists a measurable
function Tµ−→ν : Rn −→ Rn such that, if x1 ∼ µ and x2 ∼ ν are two random variables, then
x2

a.s
= Tµ−→ν(x1). We refer to Tµ−→ν as the optimal transport operator between µ and ν. Like

in [5], we also abuse this notation even when π is non-degenerate, in which case Tµ−→ν represents a
one-to-many (stochastic) mapping.

Additionally, when considering two Multivariate Gaussians (MVGs) x1 and x2 with
x1 ∼ N (µx1

,Σx1
) and x2 ∼ N (µx2

,Σx2
), respectively, and assuming that Σx1

and Σx2
are non-

singular, there exists a closed-form solution for the optimal transport operator, which is deterministic
and linear:

TMVG
px1

−→px2
(x1) = Σ

− 1
2

x1

(
Σ

1
2
x1Σx2

Σ
1
2
x1

) 1
2

Σ
− 1

2
x1 · (x1 − µx1

) + µx2
, (2)

where a symmetric and positive definite square root of the matrices is chosen.
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3.2 Wasserstein-2 MSE tradeoff

We build upon the problem setting introduced in [1, 2] to establish our analysis. We consider the
following scenario: x ∈ Rn represents a source natural image, y ∈ Rm represents its degraded
version, and we assume that the posterior px|y(·|y) is non-degenerate for almost any y. Our objective
is to construct an estimator x̂ that predicts x given y. A valid estimator x̂ should be independent of
x given y. Finally, px, px∗ and px̂0 denote the probability distributions associated with the random
variables x, x∗ and x̂0, respectively.

Let x∗ = E[x|y] denote the MMSE estimator that achieves the minimal MSE, i.e., MSE(x,x∗) =
Dmin. Additionally, let x̂0 denote the Dmax estimator, which among all estimators satisfying
W2(px, px̂0

) = 0, attains the minimal MSE, namely, MSE(x, x̂0) = Dmax (refer to fig. 1). Notably,
as discussed in [1], these estimators have a compelling property: their joint distribution px̂0,x∗ is an
optimal transport plan between x∗ and x, characterized by the following optimization problem:

px̂0,x∗ ∈ argmin
px1,x2

∈Π(px,px∗ )

E
[
∥x1 − x2∥22

]
. (3)

In other words, finding x̂0 is equivalent to finding an optimal transport plan from x∗ to x. Then, the
Dmax estimator is simply x̂0 = Tpx∗−→px(x

∗).

This estimator is particularly useful as it allows to obtain any point on the perception-distortion
function through a naive linear interpolation with the MMSE estimator. Specifically, we can define
the interpolated estimator x̂P as follows:

x̂P = (1− α)x̂0 + αx∗, (4)

where 0 ≤ α ≤ 1 is an interpolation constant [1] that depends on the perceptual index of x∗ and the
desired perceptual index 0 ≤ P = W2(x, x̂P ) (refer to fig. 1).
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Figure 3: Trading perception and distortion using out-of-the-box predictors, wrapped with our
method. Using eq. (4) with α ∈ [0, 1] we interpolate a given predictor (orange) and our improved
Dmax estimation (green), to approximate the PD FID-MSE function (blue curve). With α ∈
[−1, 0] ∪ [1, 2] we extrapolate outside of the PD curve (light gray), beyond the theory-inspired area,
to further improve performance.

4 Method

We start by describing the general flow of our proposed algorithm, and then move to elaborate on
each of its components.

Theoretically speaking, our algorithm, combined with any given MMSE estimator, is an approxima-
tion of the Dmax estimator. In practice, however, it can be combined with any type of estimator and
potentially improve its perceptual quality. I.e., it can be combined with an estimator that optimizes

4



Pixel Space Latent Space

flatten each patch and
aggregate

matmul

Our improved
estimation

Training

Inference
flatten each patch

unflatten

unfold

unfold

unfold

fold

A given estimate

Figure 4: With a pre-trained VAE, we estimate the first and second order statistics of the latent
patches of natural images and the restorations of some given estimator. At inference time, we use the
closed-form OT eq. (2) operator between MVG distributions to transport the latent representation of
a given restored sample, which, after decoding, increases the visual quality of the restored sample.
For a fully detailed explanation of the algorithm, see section 4.

distortion (e.g., SwinIR [11]) and improve its perceptual quality at the expense of distortion, or it can
be combined with an estimator that optimizes perceptual quality (e.g., DDRM [3]) and improve its
perceptual quality even further. As a result, our algorithm is agnostic to the type of degradation. To
clarify, our algorithm is not really a restoration algorithm by itself, but rather a wrapper which can
potentially improve the perceptual quality of any given estimator.

4.1 The algorithm

The main goal of our algorithm is to approximate the optimal transport plan between px̂ and px,
namely, Tpx̂−→px , where x̂ is a given estimator. Theoretically, with such an operator, one could
optimally transport x̂ such that, with minimal loss in MSE performance, the transported estimator
would attain perfect perceptual quality. Computing Tpx̂−→px for high dimensional distributions is a
difficult task, involving complex (often adversarial) optimization (see discussion in section 2). To
solve this, we perform several assumptions and approximations that allow us to efficiently compute a
closed form transport operator that approximates Tpx̂−→px . The flow of the algorithm is presented
in fig. 4, and goes as follows:

Encoding: In the training stage we encode N natural images {x(i)}Ni=1 and N restored samples
{x̂(i)}Ni=1 (unpaired) into their latent representations, {x(i)

e }Ni=1 and {x̂(i)
e }Ni=1, respectively. The size

of each image sample is denoted by (3, H,W ), where H and W are the height and width, respectively,
and the size of their latent representation is denoted by (c,He,We). In the inference stage we perform
the same process but only on a single estimate x̂, resulting again in a latent representation of size
(c,He,We)

Unfold: From each latent representation we extract all the overlapping patches of size (c, p, p), where
p is the height and width of each patch.

Flatten each patch and aggregate: We flatten all the extracted patches to obtain 1-dimensional
vectors of size cp2, which we assume to come from a MVG distribution. In the training stage
we compute their empirical mean and covariance matrix (aggregating over the N dimension), and
compute the optimal transport in closed-form TMVG

px̂e−→pxe
using eq. (2).
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Matmul and unflatten: We apply the pre-computed transport operator using a simple matrix-vector
multiplication on the flattened version of the patches extracted from the latent representation x̂e. We
then reshape each vector to the original patch size (c, p, p) (unflatten).

Fold: We rearrange the transported patches back to the original size of the latent representation
(reversing the unfold operation). Since the patches overlap, we simply average the shared pixels.

Decoding: To produce our final enhanced estimation x̂0, we decode the transported latent image back
to the pixel space using the decoder of the VAE.

Together, the inference steps form an end-to-end approximation of the desired transport operator
Tpx̂−→px . In appendix B we elaborate on the choices and practical considerations of our algorithm.

5 Experiments

In all of our experiments we use the encoder and decoder of the VAE [27] from stable-diffusion [7].

The pre-trained models we evaluate: We apply our latent transport method (described in section 4)
on SwinIR [11], Restormer [12] and Swin2SR [13], all of which attempted to minimize average pixel
distortion using a supervised regression loss on paired image samples. Additionally, we apply our
algorithm on models that are trained to achieve high perceptual quality, and show that we can improve
their visual quality even further. As such, we tested two benchmark models in high perceptual quality
image restoration: ESRGAN [16], a GAN-based method, and DDRM [3], a diffusion-based method.
Beyond our original goal to improve perceptual quality, we demonstrate that we can also traverse the
W2 -MSE tradeoff using any restoration model (e.g., SwinIR, ESRGAN). To do so, we pick any of
the aforementioned algorithms and apply our method to improve its perceptual quality, leading to
a new estimator. We then interpolate the original algorithm and its improved version using eq. (4),
adjusting α to traverse the tradeoff. To clarify, we plug the original algorithm as x∗ in eq. (4) (instead
of the theoretical MMSE estimator), and plug our improved version as x̂0 (instead of the theoretical
Dmax estimator).

Restoration tasks: We showcase our algorithm on Single-Image Super-Resolution (SISR), denoising
of Additive White Gaussian Noise (AWGN), JPEG [28] decompression, Noisy Super-Resolution
(NSR) and Compressed Super-Resolution (CSR). Training and inference of our algorithm are per-
formed on each restoration model separately, and the evaluation is performed on the restoration task
that corresponds to the given model.

Transport operator computation: The transport operator is computed using two disjoint sets of
10 randomly picked images from the ImageNet [29] dataset train split. The first set is used to
approximate the predictor’s latent statistics (µx̂e

, Σx̂e
): we degrade each image according to the

restoration task the predictor is intended to solve, compute the 10 restored outputs, embed the results
and compute the embeddings’ statistics. The second set is embedded into the latent representation
without further modification and serves to approximate the natural image latent statistics (µxe , Σxe ).

Metrics: In addition to Peak Signal-to-Noise Ratio (PSNR), we evaluate distortion performance with
Structural Similarity Index Measure (SSIM) [30] and Learned Perceptual Image Patch Similarity
(LPIPS) [31], both of which suit better for natural image comparison [31].

Nonetheless, LPIPS remains by definition a distortion (full-reference) measure: it is non-negative and
zero when the two images are identical [2]. Interestingly, the original perception-distortion paper [2]
already classified the VGG loss [32] - the ancestor of LPIPS - to be a distortion, on which the tradeoff
exists (but is less severe).

Therefore, to evaluate perceptual quality, we use the Inception Score (IS) [33], the Fréchet Inception
Distance (FID) [25] and the Kernel Inception Distance (KID) [34] following popular image restoration
papers [3, 7, 35].

Data sets: It is impractical to perform a serious quantitative evaluation of the perception-distortion
tradeoff on real-world datasets (e.g., SIDD, DND, RealSR), which have too few samples to compute
FID. Hence, for all models except DDRM [3] and Swin2SR [13], we report the performance on
the 50,000 validation samples of ImageNet [29] following [7, 35]. Because of its computational
complexity, DDRM [3] reported its performance on a subset of a 1000 ImageNet [29] validation
samples. For Swin2SR [13], we use the official DIV2K [36] restored samples provided by the authors.
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Although our algorithm can be applied to images with arbitrary aspect ratios, all the tested models
were trained on square images. Thus, we resize the samples to 512 × 512 pixels following the
pre-processing procedure of DDRM [3]. Finally, we conduct the qualitative evaluation on popular
samples from DIV2K or Set14.

5.1 Quantitative results

As reported in table 1, our algorithm can trade perceptual quality for distortion (and vice versa) at test
time. We sometimes even manage to improve the pre-trained predictor’s PSNR, even of regression
models like SwinIR and Swin2SR. When using α ≤ 0, we systematically improve the predictor’s
perceptual performance (FID, KID, IS), even for estimators which were designed to achieve photo-
realism in the first place, e.g., ESRGAN and DDRM. On Non-Local-Means (NLM) [15], an older,
non deep-learning denoising algorithm, our method marginally improves all metrics.

While, in theory, our procedure to traverse the perception distortion tradeoff should only include
values of α in the range [0, 1] (see eq. (4)), we also tried to use values outside of this range. As shown
in fig. 3, with α ∈ [−1, 0] ∪ [1, 2] we can obtain even better PD curves, and sometimes improve the
perceptual quality and/or the distortion of the methods even further. For instance, the PD curve of
Swin2SR obtained using α ∈ [1, 2] is strictly better than the one obtained using α ∈ [0, 1]. This
deviation from the theory can be explained by the implementation choices discussed in section 4;
We perform the transport in the latent space – not the pixel space. Additionally, we use FID as
perceptual index to measure visual quality when the theory presented in section 3.2 only talks about
the Wasserstein-2 distance. In practice, the sharpened details that appear in x̂0 and not in x∗ are
either amplified when α ∈ [−1, 0] or subtracted (instead of being added) to x∗ when α ∈ [1, 2]. We
leave the formal analysis of this interesting phenomenon for future research.

Choosing the right value of α: Like any other hyper-parameter, α can improve the performance
with some tuning when approaching a new task or a new data set (refer to table 1). We argue that
the few-shot nature of our algorithm makes this tuning actually practical: α does not need to be set
before performing some expensive training. Once x̂α=0 is computed, any x̂α can be obtained thanks
to eq. (4) without additional cost. In any case, as reported in table 1, α = 0 consistently improves
perceptual quality for all the tasks and models considered (as expected from the theory). We consider
it to be a satisfying default choice, so manually adjusting α is not a great concern.

5.2 Qualitative results

Qualitative results on arbitrary image sizes and aspect ratios are shown in fig. 5. Using our method, we
observe a consistent improvement of photo-realism when transporting existing restoration algorithms
using our method. Hence, the qualitative results align with the quantitative perceptual performance
gains.

5.3 Training details & ablation study

All the results presented in figs. 3 and 5 and table 1 were obtained using the same hyper-parameters.
We used the “f8-ft-MSE” fine-tuned version of stable-diffusion’s VAE from Hugging-Face’s diffusers
library [37]. For the training stage we use 20 randomly-drawn images from the ImageNet training set
(10 images which we use as the natural images set, and 10 images which we degrade and then restore
with the estimator). We used a patch-size of p = 3 in the latent space.

Thanks to its simplicity, for each restoration task, our few-shot algorithm requires just a single GPU,
and a few seconds for both training and inference.

We turn to detail some considerations about practical aspects of our algorithm which we empirically
evaluate on the popular SISR×4 task for the ESRGAN estimator.

Patch size: We experiment with increasing patch-sizes when unfolding the latent image (see ap-
pendix B.2). p = {3, 5} yielded the best PSNR and FID. Smaller patch size (p = 1) resulted in worse
FID and bigger size 7 ≤ p ≤ 15 yielded slightly worse PSNR.

Training size: As discussed in appendix B.4, each image contributes thousands of samples to the
computation of the OT operator. Still, we expect the empirical statistics estimation to benefit from
a larger sample size S. To confirm this, we repeated the visual enhancement experiments while

7



Table 1: Using eq. (4), our algorithm can trade-off perception and distortion at inference time on
any predictor [3, 11–13, 15, 16] and image restoration task. For each task, we report the performance
of x̂0. It consistently improves perceptual metrics on all taks and models (aside of NLM). We also
report other interesting choices of α that optimize perception and distortion (for more details about
this choice refer to section 5.1).

Distortion Perception

Signal PSNR ↑ SSIM ↑ LPIPS ↓ FID ↓ IS ↑ KID×103 ↓
x ∞ 1 0 0 240.53±4.42 0

Task D(E(x)) 27.10 0.81 0.13 0.24 234.71±4.04 0.02±0.07

SISR×4
SwinIR [11] 28.10 0.84 0.24 2.54 201.52±4.85 1.24±0.24
x̂0.9 28.15 0.84 0.24 2.80 198.69±2.97 1.38±0.24
x̂−0.2 25.08 0.77 0.25 1.19 216.74±4.26 0.38±0.89
x̂0 25.48 0.78 0.23 1.39 214.63±5.50 0.69±0.23

JPEGq=10
SwinIR [11] 29.68 0.86 0.30 8.95 161.73±3.36 6.52±0.77
x̂1.1 29.58 0.86 0.30 8.36 166.50±3.12 6.08±0.75
x̂−0.2 23.74 0.76 0.31 7.56 166.65±3.58 5.68±0.83
x̂0 24.84 0.78 0.30 8.14 163.14±3.93 6.15±0.77

AWGNσ=50
Restormer [12] 30.18 0.86 0.26 5.21 178.62±2.83 3.29±0.56
x̂1.1 30.09 0.86 0.25 4.63 183.36±3.20 2.61±1.53
x̂1.7 27.26 0.82 0.25 2.73 198.93±5.13 1.76±1.58
x̂0 25.31 0.78 0.27 4.42 182.86±2.21 2.93±1.62

SR×4JPEGq=10
Swin2SR [13] 19.75 0.55 0.53 205.00 5.95±0.49 40.68±3.34
x̂0.8 19.81 0.55 0.53 209.82 5.91±0.69 43.28±3.86
x̂1.9 18.44 0.49 0.51 168.12 6.36±0.69 19.95±2.84
x̂0 18.45 0.48 0.51 183.80 6.55±0.61 29.07±3.58

SISR×4
ESRGAN [16] 26.77 0.80 0.21 1.06 221.68±3.06 0.43±0.14
x̂0.7 27.00 0.81 0.21 1.51 215.87±3.64 0.56±0.21
x̂−0.2 24.84 0.74 0.23 0.80 221.89±2.53 0.30±0.20
x̂0 25.33 0.74 0.22 0.89 220.96±3.19 0.34±0.18

SR×4AWGNσ=50
DDRM [3] 26.10 0.75 0.34 36.44 43.52±3.33 5.09
x̂1.2 25.91 0.75 0.33 33.68 44.90±4.06 3.88
x̂1.7 24.48 0.70 0.35 29.05 47.91±2.69 1.47
x̂0 23.19 0.69 0.35 29.71 46.36±4.18 1.91

AWGNσ=50
NLM [15] 26.09 0.71 0.44 12.84 148.71±3.75 8.73±0.91
x̂0.8 26.24 0.72 0.43 12.46 148.78±2.49 8.60±0.95
x̂0 24.80 0.71 0.42 14.88 140.65±2.10 10.90±1.15

varying the number of training samples. Surprisingly, we observe no change in the performance of
the evaluated metrics for S = {105, 104, 103, 102}, i.e., approximating the distribution statistics with
100 samples is as good as using 100,000 samples, and this is true regardless of the chosen patch size.
Moreover, when With S = 10, then only for small patch sizes of p ≤ 5 we observe no performance
drop compared to using a larger sample size. This suggests that our method can be successfully
deployed in few-shot settings, where the number of available samples is small.

Paired vs. unpaired samples: Surprisingly, using paired images to compute the distribution
parameters yielded better PSNR but worse FID. We suspect that using paired updates induces a bias
which results in worse covariance estimation.

Transporting the degraded measurement directly: Applying our algorithm on the degraded input
directly led to insufficient results as we see in appendix B.7.

Re-applying the algorithm another time on x̂0: This is actually an interesting idea we tested on
super-resolution when conducting our evaluations. As a matter of fact, the performance does not
improve (it even degrades a bit) when applying the algorithm another time. The explanation is quite
simple: After transporting once the test images using the VAE, their latent distribution aligns with
that of the natural images. Hence, transporting another time does nothing (the transport operator is
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Figure 5: Our method (third column from the left) notably improves the results of several benchmark
predictors (second column from the left) on various degradations.

the identity matrix). We are only left with the reconstruction error introduced by the encoding and
decoding of the images, which deteriorates the MSE performance.

Does the selection on the training data have an impact on the performance of restoration?: Our
experiments showed that the class of images does not have a significant impact on the performance
(e.g. one could use images of cars to improve images of dogs). However the resolution of images
does play a significant role in attaining the best performance. I.e., to transport 512x512 images, it
is best to use training images of the same resolution. This drawback is somewhat mitigated by the
few-shot nature of the algorithm.

6 Discussion

Limitations: The pre-trained VAE used for the purpose of our experiments exhibits a rate of
R = 48 on 5122 images which inevitably translates into sub-optimal distortion performance [38].
Thus, the distortion performance of our estimates are bounded by that of the pre-trained VAE. I.e.,
even encoding and decoding a completely clean and natural image does not yield result in perfect
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Figure 6: Our method’s reconstruction capabilities are bounded by that of the VAE. Our algorithm is
not able to preserve complex visual structures such as face identity (top row) or text (middle row).

reconstruction. Most notably, the VAE sometimes fails to reconstruct human faces, as well as text
images, and such a weaknesses affects our algorithm as well (see fig. 6).

Finally, it has been recently shown that the posterior sampler is the only estimator attaining perfect
perceptual quality while producing outputs that are perfectly consistent with the degraded input [39].
As such, Dmax cannot hope for consistent restorations.

Potential impact: Instead of using sophisticated and data-hungry generative models, we show it is
possible to obtain photo-realistic results using simple tools like MMSE estimators and VAEs. We
hope our few-shot algorithm will inspire other simple and practical image restoration methods.

Potential misuse: Our algorithm aims at improving the perceptual quality of existing algorithms.
However, when using a biased training set, this could potentially cause bias in the enhanced restoration
as well. This could potentially harm the results of medical image diagnosis, for example.
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Deep Optimal Transport: A Practical Algorithm for Photo-realistic Image
Restoration - Supplementary Material

A Background and extensions

A.1 Numerical Example

y = x+ n

MSE : 6.5
W2 : 1.0

x∗ = E[x|y]

MSE : 12.4
W2 : 0.5

x̂ ∼ px|y

MSE : 6.9
W2 : 0.6

x̂0

0.6 W2 1.0
6.5

MSE

7.1 x̂0

x∗

12.4 px|y

MSE(W2) function

Figure 7: 2D Gaussian mixture denoising. Source samples are shown in blue. The MMSE
estimator (x∗, orange) attains the best MSE but the worst perceptual index W2 . The posterior
samples (x|y, purple) attain the best perceptual index but half of the optimal MSE performance.
The Dmax estimator (x̂0, green) maintains the MSE of x∗ while attaining a perceptual quality close
to x|y. The DP curve is obtained by interpolating x̂0 and x∗ using eq. (4).
To guide the reader in understanding the MMSE transport paradigm, we showcase our method on a
2-dimensional denoising problem. To avoid a too trivial uni-modal example, we draw the clean signal
from a 4-components Gaussian mixture with non-trivial covariances. We derive linear MMSE and
posterior estimators from [40] and proceed by applying the closed-form transport operator introduced
in eq. (3).

Note that to avoid deviating from our actual method, we refrain from using more advanced transport
operators better suited for multi-modal data. Indeed, those are not a practical solution for real-world
image datasets, as they require much more samples than actually available.

We summarize the experiment results in fig. 7. We observe that we obtain the best perceptual quality
by sampling from the posterior distribution. However, we witness a significant decrease in MSE
performance as predicted by [2]. In contrast, the Dmax estimator enjoys a good perceptual index
while maintaining a close-to-optimal distortion performance.

A.2 Stochastic transport operator

Throughout our experiments, we found out that increasing the patch-size p can result in numerical
instabilities. Recall that the linear transport operator presented in eq. (3) uses the inverse square root
of the source covariance matrix Σx1

. When p is large, (typically p ≥ 7), we obtain ill-conditioned
covariance matrices. When the smallest singular value is still positive, we add a small stability
constant to the matrix diagonal to ensure it is strictly positive definite. However, the numerical errors
sometimes adds up to negative eigenvalues. 2 In this case, we clamp the negative eigenvalues to zero
and use the stochastic (one-to-many) transport operator proposed by [1],

Tstochastic
px1

−→px2
(x1) = Σ

1
2
x2

(
Σ

1
2
x2Σx1

Σ
1
2
x2

) 1
2

Σ
− 1

2
x2 Σ†

x1
(x1 − µx1

) + µx2
+ w, (5)

when Σ†
x1

denotes the pseudo-inverse of Σx1
(after negative eigenvalues where clamped) and

w ∼ N (0,Σ
1
2
x2(I − Σ

1
2
x2T∗Σ†

x1
T∗Σ

1
2
x2)

1
2Σ

1
2
x2), with T∗ = Σ

− 1
2

x2

(
Σ

1
2
x2Σx1Σ

1
2
x2

) 1
2

Σ
− 1

2
x2 .

2We tried to avoid overflow when summing over the images by using 64 bit precision

13



B Practical choices and considerations in our algorithm

B.1 Working in latent space

We adopt the latent transport approach where the images are embedded into the latent space of
a pre-trained auto-encoder. Let E(·), D(·) denote the encoder and decoder, respectively. Even if
D(E(t)) = t, it is likely that E(·) “deforms” the space, I.e., ∥E(s)− E(t)∥ ̸= ∥s− t∥, which means
that the optimal transport plan in the latent space could be different than the plan we seek in the pixel
space (the cost function in eq. (3) has changed). We can address this by modifying the latent cost
function to account for the deformation via the following change of variables

E
[
∥x̂− x∥2

]
= E

[
∥E(x̂)− E(x)∥2

|∂E(x)
∂x | · |∂E(x̂)

∂x̂ |

]
, (6)

where |∂E(x)
∂x | is the determinant of the Jacobian matrix of E(·) However it is not a practical solution

since we lose access to the closed-form solution eq. (2). Note that the latent MSE approximation is
usually desirable when dealing with natural images (e.g. to elaborate image quality measure [41],
perceptual quality metrics [25]). It is also true in our case but it means we can no longer claim we
obtain the Dmax estimator.

With that, we argue that switching to a latent cost is actually a strength rather than a weakness of
our method. Indeed, using the MSE between deep latent variables has shown to be a better fit to
compare natural images than directly working in the pixel space [31]. The authors of [7] trained
their VAE (which is used in our experiments) to remove “imperceptible details” from the latent
representation, in order to better focus on higher level image semantics. In section 5.1 we validate
this claim by showing that our algorithm maintains the “perceptual” discrepancy performance of the
original estimator (e.g., LPIPS).

B.2 Overlapping patches extraction strategy

For Convolutional Neural Network (CNN) encoders 3, let (c,He,We) denote the shape of the latent
representation (CNN encoders produce 3-dimensional encoded tensors), where He,We the spatial
extent and c is the number of channels (i.e., the number of convolution kernels in the last convolution
layer). The covariance matrices Σx̂e

, Σxe
contain (c,He,We)

2

2 parameters, which may require a
large amount of samples for large latent images with He,We ≫ 1. To mitigate the quadratic
dependency on He ·We, we assume that the latent pixels depend only on the pixels in their close
neighborhood. In practice, we unfold the latent representation, extracting all overlapping patches of
shape (c, p, p). A similar approximation exists in the style-transfer literature [8, 9], where instead of
patches, only the pixels are considered (i.e., this is a private case of our approach with p = 1). In
section 5.3 we empirically show that increasing p improves the perceptual quality at the expense of
MSE performance, given that enough training samples are available.

B.3 Shared distribution

When dealing with natural image scenes, it is beneficial to suppose that overlapping patches share
common statistical attributes [41, 42]. In the case of a CNN encoded image, this approximation
remains satisfying because we ultimately look at filter activations which are spatial-invariant with each
latent patch having the same receptive field. Therefore, we assume that the overlapping patches are
all samples from the same distribution. This approach dramatically reduces the number of estimated
parameters, and also multiplies the number of samples at our disposal by He ·We, which alleviates
the curse of dimensionality. We demonstrate these practical benefits in section 5.3. In practice, given
N images, we “flatten” all the extracted patches to vectors vcp2×1 which we stack into a sample
matrix X

NHeWe×cp2
. We then aggregate the samples to compute the MVG statistics: µ = XT1,

Σ = NHeWe

NHeWe−1 (X − µ)(X − µ)T . As NHeWe may be very large, we perform all computations in
double precision. When training, this process is done twice; once for the natural image samples, and
once for the restored samples we wish to transport.

3This methodology can easily be extrapolated to other encoder architectures.
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B.4 Size of the latent representation

When increasing the capacity of models with a fixed encoding rate, deepening is preferable than
widening. Indeed, increasing c makes the covariance estimation dramatically harder while increasing
He,We enlarges the sample pool. Therefore, the VAE from [7] with c = 4 and He,We ≫ 1 is a
particularly good candidate for our method. For p = 3 for instance, the covariance matrix admits only
1296 parameters while each 5122 image contributes 4096 samples to its estimation. As we see next,
this greatly contributes to reducing the number of training samples needed to estimate the covariance
matrices and allows to compute the transport operator in a few-shot manner.

B.5 Transport

In a single pass on a data set of natural images and a (possibly different) data set of restored
samples, we compute TMVG

px̂e−→pxe
(see eq. (2)). Note that each latent distribution could sometimes be

degenerate, especially for severe degradations. Fortunately, the classical MVG transport operator can
be generalized to ill-posed settings where Σx̂ is a singular matrix (see appendix A.2).

B.6 Decoding

Since the transported patches overlap, we “fold” them back into a latent image x̂0,latent by averaging.
The latent image is then decoded back to the pixel space, i.e. x̂0 = D(x̂0,latent). Since E(·) is not
invertible, the decoder D(·) is used as a convenient approximation in the training domain of the
auto-encoder. A corollary of this approximation is that the auto-encoder should in theory be trained
on the image distribution we aim to transport, which weakens our claim to a fully blind algorithm.

All the steps described above are summarized in fig. 4.

B.7 Transporting the degraded measurement

We tried applying our algorithm on the degraded measurement directly. Indeed we observe quali-
tatively and quantitatively that transporting the degraded measurement y amplifies the degradation
(refer to fig. 8).

y (degraded) x∗ (SwinIR) Tpy−→px(y) x̂0 x (original)

Figure 8: Transporting the degraded measurement (JPEGq=10) directly is not enough to restore the
image. It can sometimes even exacerbate the degradation. Quantitatively, the degraded sample y has
better PSNR and FID than its transported version (respectively 27.26 dB and 13.88 FID v.s. 23.69 dB
and 15.88 FID).
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